Полезные материалы:

Решения типовых задач - Математический анализ

Полное исследование функции и построение графика

Для полного исследования функции и построения ее графика рекомендуется следующая схема:
А) найти область определения, точки разрыва; исследовать поведение функции вблизи точек разрыва (найти пределы функции слева и справа в этих точках). Указать вертикальные асимптоты.
Б) определить четность или нечетность функции и сделать вывод о наличии симметрии. Если , то функция четная, симметрична относительно оси OY; при  функция нечетная, симметрична относительно начала координат; а если – функция общего вида.
В) найти точки пересечения функции с осями координат OY и OX (если это возможно), определить интервалы знакопостоянства функции. Границы интервалов знакопостоянства функции определяются точками, в которых функция равна нулю(нули функции) или не существует и границами области определения этой функции. В интервалах, где  график функции расположен над осью OX, а где – под этой осью.
Г) найти первую производную  функции, определить ее нули и интервалы знакопостоянства. В интервалах, где  функция возрастает, а где  убывает. Сделать заключение о наличие экстремумов (точек, где функция и производная существуют и при переходе через которые  меняет знак. Если  меняет знак с плюса на минус, то в этой точке функция имеет максимум, а если с минуса на плюс, то минимум). Найти значения функции в точках экстремумов.
Д) найти вторую производную , ее нули и интервалы знакопостоянства. В интервалах, где < 0 график функции выпуклый, а где  – вогнутый. Сделать заключение о наличии точек перегиба и найти значения функции в этих точках.
Е) найти наклонные (горизонтальные) асимптоты, уравнения которых имеют вид ; где
.
При  график функции будет иметь две наклонные асимптоты, причем каждому значению x при  и  могут соответствовать и два значения b.
Ж) найти дополнительные точки для уточнения графика (если в этом есть необходимость) и построить график.

Пример 1 Исследовать функцию  и построить ее график. Решение: А) область определения ; функция непрерывна в области определения;  – точка разрыва, т.к. ; . Тогда – вертикальная асимптота.
Б)
т.е. y(x)– функция общего вида.
В) Находим точки пересечения графика с осью OY: полагаем x=0; тогда y(0)=–1, т.е. график функции пересекает ось в точке (0;-1). Нули функции (точки пересечения графика с осью OX): полагаем y=0; тогда
.
Дискриминант квадратного уравнения меньше нуля, значит нулей не существует. Тогда границей интервалов знакопостоянства является точка x=1, где функция не существует.
Знак функции в каждом из интервалов определяем методом частных значений:

Из схемы видно, что в интервале график функции расположен под осью OX, а в интервале –над осью OX.
Г) Выясняем наличие критических точек.
.
Критические точки (где  или не существует) находим из равенств  и .

Получаем: x1=1, x2=0, x3=2. Составим вспомогательную таблицу

Таблица 1             

(В первой строке записываются критические точки и интервалы, на которые делят эти точки ось OX; во второй строке указываются значения производной в критических точках и знаки  на интервалах. Знаки определяются методом частных значений. В третьей строке указываются значения функции y(x) в критических точках и показывается поведение функции – возрастание или убывание на соответствующих интервалах числовой оси. Дополнительно обозначается наличие минимума или максимума.
Д) Находим интервалы выпуклости и вогнутости фукнции.
; строим таблицу как в пункте Г); только во второй строке записываем знаки , а в третьей указываем вид выпуклости. Т.к. ; то критическая точка одна x=1.
Таблица 2

Точка x=1 является точкой перегиба.
Е) Находим наклонные и горизонтальные асимптоты

Тогда y=x – наклонная асимптота.
Ж) По полученным данным строим график функции

Пример2

Провести полное исследование функции  и построить ее график.
Решение.

1). Область определения функции.
Очевидно, что эта функция определена на всей числовой прямой, кроме точек “” и “”, т.к. в этих точках знаменатель равняется нулю и, следовательно, функция не существует, а прямые  и  – вертикальные асимптоты.

2). Поведение функции при стремлении аргумента к бесконечности, существование точек разрыва и проверка наличия наклонных асимптот.
Проверим сначала как ведет себя функция при приближении к бесконечности влево и вправо.

Таким образом, при  функция стремится к 1, т.е.  – горизонтальная асимптота.
В окрестности точек разрыва поведение функции определяется следующим образом:


Т.е. при приближении к точкам разрыва слева функция бесконечно убывает, справа – бесконечно возрастает.
Наличие наклонной асимптоты определим, рассмотрев равенство:

Наклонных асимптот нет.

3). Точки пересечения с осями координат.
Здесь необходимо рассмотреть две ситуации: найти точку пересечения с осью Ох и с осью Оу. Признаком пересечения с осью Ох является нулевое значение функции, т.е. необходимо решить уравнение:

Это уравнение не имеет корней, следовательно, точек пересечения с осью Ох у графика данной функции нет.
Признаком пересечения с осью Оу является значение х = 0. При этом
,
т.е.  – точка пересечения графика функции с осью Оу.

4). Определение точек экстремума и промежутков возрастания и убывания.
Для исследования этого вопроса определим первую производную:
.
Приравняем к нулю значение первой производной.
.
Дробь равна нулю, когда равен нулю ее числитель, т.е. .
Определим промежутки возрастания и убывания функции.


Т.о., функция имеет одну точку экстремума и в двух точках не существует.
Таким образом, функция возрастает на промежутках  и  и убывает на промежутках  и .

5). Точки перегиба и участки выпуклости и вогнутости.
Эта характеристика поведения функции определяется с помощью второй производной. Определим сначала наличие точек перегиба. Вторая производная функции равна



При  и функция вогнута;

при   и функция выпуклая.

 

6). Построение графика функции.
Используя в пунктах найденные величины, построим схематически график функции:

Пример3   Исследовать функцию  и построить её график.

Решение
Заданная функция является непериодической функцией общего вида. Её график проходит через начало координат, так как .
Областью определения заданной функции являются все значения переменной , кроме  и , при которых знаменатель дроби обращается в ноль.
Следовательно, точки  и  являются точками разрыва функции.
Так как ,
, то точка  является точкой разрыва второго рода.
Так как ,
, то точка  является точкой разрыва второго рода.
Прямые  и  являются вертикальными асимптотами графика функции.
Уравнения наклонных асимптот , где , .
При  ,
.
Таким образом, при  и  график функции имеет одну асимптоту .
Найдем интервалы возрастания и убывания функции и точки экстремумов.
.
Первая производная функции  при  и , следовательно, при  и  функция возрастает.
При  , следовательно, при , функция убывает.
 не существует при , .

   При переходе через точку   меняет знак с «+» на
«-», следовательно, точка  является точкой максимума функции, причем .
При переходе через точку   меняет знак с «-» на «+», следовательно, точка  является точкой минимума функции, причем ).
Найдем интервалы выпуклости, вогнутости графика функции и точки перегиба, используя вторую производную заданной функции, которая равна .
Вторая производная  при , следовательно, при  график функции вогнутый.
При  , следовательно, при  график функции выпуклый.

При переходе через точки , ,   меняет знак. При ,  функция не определена, следовательно, график функции имеет одну точку перегиба .
Построим график функции.



Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment