Полезные материалы:

Решения типовых задач - Математический анализ

Область сходимости степенного ряда

Задача Найти область сходимости степенного ряда Решение
   Заданный ряд является степенным рядом.
   Согласно признаку Даламбера, для абсолютной сходимости ряда  достаточно, чтобы .
   Для решаемой задачи , .
   Так как , то ряд будет абсолютно сходиться при значениях , удовлетворяющих неравенству .
   Решением этого неравенства является интервал , следовательно, при  исследуемый степенной ряд будет абсолютно сходиться.
   Исследуем поведение ряда на концах интервала, то есть при  и .
   При  получаем числовой ряд . Это знакочередующийся ряд, удовлетворяющий условиям теоремы Лейбница: , . Поэтому ряд  сходится, и граница интервала  принадлежит области сходимости. В область абсолютной сходимости ряда эта граница не входит, так как ряд  расходится.
   При  получаем числовой ряд . Это гармонический ряд, и он расходится. Следовательно, граница интервала  не принадлежит области сходимости степенного ряда.

  

Итак, областью сходимости степенного ряда  является полуинтервал

, а областью абсолютной сходимости степенного ряда  является интервал

.




Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment