Полезные материалы:

Математика в экономике. Экономическая статистика

Статистическое изучение взаимосвязей

Задача 1. По условным данным таблицы о стоимости основных фондов х и валовом выпуске продукции у (в порядке возрастания стоимости основных фондов) выявить наличие и характер корреляционной связи между признаками x и y.
Таблица. Стоимость основных фондов и валовой выпуск по 10 однотипным предприятиям

Предприятия
i

Основные производственные
фонды, млн. руб.
xi

Валовой выпуск
продукции, млн. руб.
yi

1
2
3
4
5
6
7
8
9
10

12
16
25
38
43
55
60
80
91
100

28
40
38
65
80
101
95
125
183
245






+
+
+
+
+






+

+
+
+

Итого

520

1000

 

 

Решение. Для выявления наличия и характера корреляционной связи между двумя признаками в статистике используется ряд методов.
1. Графический метод, когда корреляционную зависимость для наглядности можно изобразить графически. Для этого, имея n взаимосвязанных пар значений x и y и пользуясь прямоугольной системой координат, каждую такую пару изображают в виде точки на плоскости с координатами x и y. Соединяя последовательно нанесенные точки, получают ломаную линию, именуемую эмпирической линией регрессии (см. рисунок справа). Анализируя эту линию, визуально можно определить характер зависимости между признаками x и y. В нашей задаче эта линия похожа на восходящую прямую, что позволяет выдвинуть гипотезу о наличии прямой зависимости между величиной основных фондов и валовым выпуском продукции.
2. Рассмотрение параллельных данных (значений x и y в каждой из n единиц). Единицы наблюдения располагают по возрастанию значений факторного признака х и затем сравнивают с ним (визуально) поведение результативного признака у. В нашей задаче в большинстве случаев по мере увеличения значений x увеличиваются и значения y (за несколькими исключениями – 2 и 3, 6 и 7 предприятия), поэтому, можно говорить о прямой связи между х и у (этот вывод подтверждает и эмпирическая линия регрессии). Теперь необходимо ее измерить, для чего рассчитывают несколько коэффициентов.
3. Коэффициент корреляции знаков (Фехнера) – простейший показатель тесноты связи, основанный на сравнении поведения отклонений индивидуальных значений каждого признака (x и y) от своей средней величины. При этом во внимание принимаются не величины отклонений () и (), а их знаки («+» или «–»). Определив знаки отклонений от средней величины в каждом ряду, рассматривают все пары знаков и подсчитывают число их совпадений (С) и несовпадений (Н). Тогда коэффициент Фехнера рассчитывается как отношение разности чисел пар совпадений и несовпадений знаков к их сумме, т.е. к общему числу наблюдаемых единиц:
.
Очевидно, что если знаки всех отклонений по каждому признаку совпадут, то КФ=1, что характеризует наличие прямой связи. Если все знаки не совпадут, то КФ=–1(обратная связь). Если же åС=åН, то КФ=0. Итак, как и любой показатель тесноты связи, коэффициент Фехнера может принимать значения от 0 до 1. Однако, если КФ=1, то это ни в коей мере нельзя воспринимать как свидетельство функциональной зависимости между х и у.
В нашей задаче ; .
В двух последних столбцах таблицы приведены знаки отклонений каждого х и у от своей средней величины.

Число совпадений знаков – 9, а несовпадений – 1. Отсюда КФ==0,8.

Обычно такое значение показателя тесноты связи характеризует сильную зависимость, однако, следует иметь в виду, что поскольку КФ зависит только от знаков и не учитывает величину самих отклонений х и у от их средних величин, то он практически характеризует не столько тесноту связи, сколько ее наличие и направление.
4. Линейный коэффициент корреляции применяется в случае линейной зависимости между двумя количественными признаками x и y. В отличие от КФ в линейном коэффициенте корреляции учитываются не только знаки отклонений от средних величин, но и значения самих отклонений, выраженные для сопоставимости в единицах среднего квадратического отклонения t:
                   и       .
Линейный коэффициент корреляции r представляет собой среднюю величину из произведений нормированных отклонений для x и у:
,   или     .
Числитель формулы, деленный на n, т.е. , представляет собой среднее произведение отклонений значений двух признаков от их средних значений, именуемое ковариацией. Поэтому можно сказать, что линейный коэффициент корреляции представляет собой частное от деления ковариации между х и у на произведение их средних квадратических отклонений. Путем несложных математических преобразований можно получить и другие модификации формулы линейного коэффициента корреляции, например:
.
Линейный коэффициент корреляции может принимать значения от –1 до +1, причем знак определяется в ходе решения.

Например, если , то r по формуле будет положительным, что характеризует прямую зависимость между х и у, в противном случае (r<0) – обратную связь.

Если , то r=0, что означает отсутствие линейной зависимости между х и у, а при r=1 – функциональная зависимость между х и у. Следовательно, всякое промежуточное значение r от 0 до 1 характеризует степень приближения корреляционной связи между х и у к функциональной. Таким образом, коэффициент корреляции при линейной зависимости служит как мерой тесноты связи, так и показателем, характеризующим степень приближения корреляционной зависимости между х и у к линейной. Поэтому близость значения r к 0 в одних случаях может означать отсутствие связи между х и у, а в других свидетельствовать о том, что зависимость не линейная.
В нашей задаче для расчета rпостроим вспомогательную таблицу.
Таблица. Вспомогательные расчеты линейного коэффициента корреляции

i

xi

yi

tx

ty

tx ty

1

12

28

1600

5184

-1,36526

-1,10032

1,502223

288

33,6

2

16

40

1296

3600

-1,22873

-0,91693

1,126667

216

64

3

25

38

729

3844

-0,92155

-0,9475

0,873167

167,4

95

4

38

65

196

1225

-0,47784

-0,53488

0,255587

49

247

5

43

80

81

400

-0,30718

-0,30564

0,093889

18

344

6

55

101

9

1

0,102394

0,015282

0,001565

0,3

555,5

7

60

95

64

25

0,273052

-0,07641

-0,02086

-4

570

8

80

125

784

625

0,955681

0,382056

0,365124

70

1000

9

91

183

1521

6889

1,331128

1,268425

1,688436

323,7

1665,3

10

100

245

2304

21025

1,638311

2,215924

3,630373

696

2450

Итого

520

1000

8584

42818

 

 

9,516166

1824,4

7024,4

В нашей задаче: = =29,299; ==65,436.

Тогда r = 9,516166/10 =  0,9516.

Аналогично: r = 1824,4/(29,299*65,436) = 0,9516

или r = (7024,4 – 52*100) / (29,299*65,436) = 0,9516, то есть связь между величиной основных фондов и валовым выпуском продукции очень близка к функциональной.

Проверка коэффициента корреляции на значимость (существенность). Интерпретируя значение коэффициента корреляции, следует иметь в виду, что он рассчитан для ограниченного числа наблюдений и подвержен случайным колебаниям, как и сами значения x и y, на основе которых он рассчитан. Другими словами, как любой выборочный показатель, он содержит случайную ошибку и не всегда однозначно отражает действительно реальную связь между изучаемыми показателями. Для того, чтобы оценить существенность (значимость) самого r и, соответственно, реальность измеряемой связи между х и у, необходимо рассчитать среднюю квадратическую ошибку коэффициента корреляции σr. Оценка существенности (значимости) r основана на сопоставлении значения r с его средней квадратической ошибкой: .
Существуют некоторые особенности расчета σr в зависимости от числа наблюдений (объема выборки) – n.

  • Если число наблюдений достаточно велико (n>30), то σr рассчитывается по формуле (86):

.
Обычно, если >3, то r считается значимым (существенным), а связь – реальной.

Задавшись определенной вероятностью, можно определить доверительные пределы (границы)

r = (*), где t – коэффициент доверия, рассчитываемый по интегралу Лапласа (см. таблицу 4).

  • Если число наблюдений небольшое (n<30), то σr рассчитывается по формуле:

,
а значимость r проверяется на основе t-критерия Стьюдента, для чего определяется расчетное значение критерия по формуле (88) и сопоставляется c tТАБЛ.
.
Табличное значение tТАБЛ находится по таблице распределения t-критерия Стьюдента (см. приложение 2) при уровне значимости α=1-β и числе степеней свободы ν=n–2. Если tРАСЧ> tТАБЛ ,то r считается значимым, а связь между х и у – реальной. В противном случае (tРАСЧ< tТАБЛ) считается, что связь между х и у отсутствует, и значение r, отличное от нуля, получено случайно.
В нашей задаче число наблюдений небольшое, значит, оценивать существенность (значимость) линейного коэффициента корреляции будем по формулам:

= 0,3073/2,8284 = 0,1086; = 0,9516/0,1086 = 8,7591.

При вероятности 95% tтабл=2,306, а при вероятности 99% tтабл=3,355, значит, tРАСЧ> tТАБЛ, что дает возможность считать линейный коэффициент корреляции r= 0,9516 значимым.

5. Подбор уравнения регрессии представляет собой математическое описание изменения взаимно коррелируемых величин по эмпирическим (фактическим) данным. Уравнение регрессии должно определить, каким будет среднее значение результативного признака у при том или ином значении факторного признака х, если остальные факторы, влияющие на у и не связанные с х, не учитывать, т.е. абстрагироваться от них. Другими словами, уравнение регрессии можно рассматривать как вероятностную гипотетическую функциональную связь величины результативного признака у со значениями факторного признака х.
Уравнение регрессии можно также назвать теоретической линией регрессии. Рассчитанные по уравнению регрессии значения результативного признака называются теоретическими.Они обычно обозначаются (читается: «игрек, выравненный по х») и рассматриваются как функция от х, т.е. = f(x). (Иногда для простоты записи вместо пишут .)
Найти в каждом конкретном случае тип функции, с помощью которой можно наиболее адекватно отразить ту или иную зависимость между признаками х и у, — одна из основных задач регрессионного анализа. Выбор теоретической линии регрессии часто обусловлен формой эмпирической линии регрессии; теоретическая линия как бы сглаживает изломы эмпирической линии регрессии. Кроме того, необходимо учитывать природу изучаемых показателей и специфику их взаимосвязей.
Для аналитической связи между х и у могут использоваться следующие простые виды уравнений:
– прямая линия;               – парабола;
 – гипербола;                     – показательная функция;
– логарифмическая функция и др.
Обычно зависимость, выражаемую уравнением прямой, называют линейной (или прямолинейной), а все остальные — криволинейными зависимостями.
Выбрав тип функции, по эмпирическим данным определяют параметры уравнения. При этом отыскиваемые параметры должны быть такими, при которых рассчитанные по уравнению теоретические значения результативного признака были бы максимально близки к эмпирическим данным.
Существует несколько методов нахождения параметров уравнения регрессии. Наиболее часто используется метод наименьших квадратов (МНК). Его суть заключается в следующем требовании: искомые теоретические значения результативного признака должны быть такими, при которых бы обеспечивалась минимальная сумма квадратов их отклонений от эмпирических значений, т.е.
.
Поставив данное условие, легко определить, при каких значениях ,  и т.д. для каждой аналитической кривой эта сумма квадратов отклонений будет минимальной. Данный метод уже использовался нами в методических указаниях к теме 4 «Ряды динамики», поэтому, воспользуемся формулой (57) для нахождения параметров теоретической линии регрессии в нашей задаче, заменив параметр t на x.

Исходные данные и все расчеты необходимых сумм представим в таблице:

Таблица. Вспомогательные расчеты для решения задачи

i

x

y

x*x

y*x

y'

1

12

28

144

336

15

5184

7225

2

16

40

256

640

23,5

3600

5852,25

3

25

38

625

950

42,625

3844

3291,891

4

38

65

1444

2470

70,25

1225

885,0625

5

43

80

1849

3440

80,875

400

365,7656

6

55

101

3025

5555

106,375

1

40,64063

7

60

95

3600

5700

117

25

289

8

80

125

6400

10000

159,5

625

3540,25

9

91

183

8281

16653

182,875

6889

6868,266

10

100

245

10000

24500

202

21025

10404

Итого

520

1000

35624

70244

1000

42818

38762,125

 

;      ;      ;

;      ;   ;   =100–52*2,125 = – 10,5.
Отсюда искомая линия регрессии:=–10,5+2,125x. Для иллюстрации построим график эмпирической (маркеры-кружочки) и теоретической (маркеры-квадратики) линий регрессии.

Рис.6. График эмпирической и теоретической линий регрессии.
6. Теоретическое корреляционное отношение представляет собой универсальный показатель тесноты связи. Измерить тесноту связи между коррелируемыми величинами – это значит определить, насколько вариация результативного признака обусловлена вариацией факторного признака. Ранее были рассмотрены показатели, с помощью которых можно выявить наличие корреляционной связи между двумя признаками x и y и измерить тесноту этой связи: коэффициент Фехнера и линейный коэффициент корреляции.
Наряду с ними существует универсальный показатель – корреляционное отношение (или коэффициент корреляции по Пирсону), применимое ко всем случаям корреляционной зависимости независимо от формы этой связи. Следует различать эмпирическое и теоретическое корреляционные отношения. Эмпирическое корреляционное отношение рассчитывается на основе правила сложения дисперсий как корень квадратный из отношения межгрупповой дисперсии к общей дисперсии, т.е.
.
Теоретическое корреляционное отношение  определяется на основе выравненных (теоретических) значений результативного признака , рассчитанных по уравнению регрессии.  представляет собой относительную величину, получаемую в результате сравнения среднего квадратического отклонения в ряду теоретических значений результативного признака со средним квадратическим отклонением в ряду эмпирических значений. Если обозначить дисперсию эмпирического ряда игреков через , а теоретического ряда – , то каждая из них выразится формулами:
,
.
Сравнивая вторую дисперсию с первой, получим теоретический коэффициент детерминации:
,
который показывает, какую долю в общей дисперсии результативного признака занимает дисперсия, выражающая влияние вариации фактора x на вариацию y. Извлекая корень квадратный из коэффициента детерминации, получаем теоретическое корреляционное отношение:
.
Оно может находиться в пределах от 0 до 1. Чем ближе его значение к 1, тем теснее связь между вариацией y и x. При <0,3 говорят о малой зависимости между коррелируемыми величинами, при 0,3<<0,6 – о средней, при 0,6<<0,8 – о зависимости выше средней, при >0,8 – о большой, сильной зависимости. Корреляционное отношение применимо как для парной, так и для множественной корреляции независимо от формы связи. При линейной зависимости .
В нашей задаче расчет необходимых сумм для использования в формуле (93) приведен в последних двух столбцах таблицы 12. Тогда теоретический коэффициент детерминации по формуле (93) равен:2теор = 38762,125 / 42818 = 0,9053, то есть дисперсия, выражающая влияние вариации фактора x на вариацию y, составляет 90,53%.
Теоретическое корреляционное отношение по формуле (94) равно: теор== 0,9515, что совпадает со значением линейного коэффициента корреляции и, следовательно, можно говорить о большой, сильной зависимости между коррелируемыми величинами.

 



Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment