Полезные материалы:

Математика в экономике. Экономическая статистика

Средние величины и показатели вариации

Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29.
Для анализа распределения студентов по возрасту требуется:
1) построить интервальный ряд распределения и его график;
2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации;
3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.

Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n):
n = 1 +3,322 lg N,
где N – число величин в дискретном ряде.
В нашей задаче n = 1 + 3,322lg25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6.
После определения оптимального количества интервалов определяем размах интервала по формуле:
h = H / n,
где H – размах вариации.
H = Хмах –Хmin,
Xмax и Xmin — максимальное и минимальное значения в совокупности.
В нашей задаче h = (29 – 19)/6 = 1,67.
Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.
Таблица 1 . Вспомогательные расчеты для решения задачи

Xi , лет

fi

Хи

Хиfi

Хи-

(Хи-)2

(Хи-)^2*fi

(Хи-)^3 *fi

(Хи-)^4 *fi

до 20,67

12

19,833

237,996

-2,134

25,602

4,552

54,623

-116,539

248,638

20,67-22,33

4

21,5

86,000

-0,467

1,866

0,218

0,871

-0,406

0,189

22,33-24

3

23,167

69,501

1,200

3,601

1,441

4,323

5,190

6,231

24-25,67

3

24,833

74,499

2,866

8,599

8,217

24,650

70,659

202,543

25,67-27,33

2

26,5

53,000

4,533

9,067

20,552

41,105

186,348

844,806

более 27,33

1

28,167

28,167

6,200

6,200

38,446

38,446

238,383

1478,091

Итого

25

549,163

54,937

164,018

383,636

2780,498

На основе этой группировки строится график распределения возраста студентов:

Рис. График распределения возраста студентов.
Мода – это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (13):
,
где ХMo – нижнее значение модального интервала; fMo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; fMo-1 – то же для интервала, предшествующего модальному; fMo+1 – то же для интервала, следующего за модальным; h  – величина интервала изменения признака в группах.
В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (13), определяем точное значение модального возраста:
Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет).
Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:

где XMe – нижняя граница медианного интервала; h – его величина (размах); – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; fMe – число наблюдений или объем взвешивающего признака в медианном интервале.
В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста.

Определяем точное значение медианного возраста:
Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года).
Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (несгруппированном) порядке, по общей формуле (15). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (16).
=

*=.
При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин.
Таблица 2. Виды степенных средних и их применение


m

Название
средней

Формула расчета средней

Когда применяется

простая

взвешенная

1

Арифметическая

=          

=            

Чаще всего, кроме тех случаев, когда должны применяться другие виды средних

–1

Гармоническая

ГМ =        

ГМ =

Для осреднения величин с дробной размерностью при наличии дополнительных данных по числителю дробной размерности

0

Геометрическая

   

     

Для осреднения цепных индексов динамики

2

Квадратическая

=      

*=        

Для осреднения вариации признака (расчет средних отклонений)

3

Кубическая

=     

=      

Для расчета индексов нищеты населения

1

Хронологическая

Для осреднения моментных статистических величин


В нашей задаче, применяя формулу (18) и подставляя вместо  середины интервалов возраста ХИ, определяем средний возраст студентов: = 549,163/25 = 21,967 (года). Теперь осталось определить типичность или нетипичность найденной средней величины. Это осуществляется с помощью расчета показателей вариации. Чем ближе они к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности. При этом критериальным значением коэффициента вариации служит 1/3.
Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации.
Среднее линейное отклонение определяется по формулам:
 –простое;  – взвешенное.
Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (31):
= .
Дисперсия определяется по формулам:
простая;  взвешенная.
В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации: = 2,198/21,967 = 0,100. По значению этого коэффициента для рассмотренной группы студентов делаем вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,100 < 0,333).
Применяя формулу (33), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: = = 2,561 (года).Разделив это значение на средний возраст, получим квадратический коэффициент вариации:  = 2,561/21,967 = 0,117. По значению этого коэффициента для рассмотренной группы студентов можно сделать вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,117 < 0,333).
В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (34) и коэффициент асимметрии Пирсона (35):
,  .
Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен.
В нашей задаче ==383,636/25 = 15,345; =2,5613= 16,797; =15,345/16,797 = 0,914 > 0, значит, распределение студентов по росту с правосторонней асимметрией. Это подтверждает и значение коэффициента асимметрии Пирсона: As = (21,967-20)/2,561 = 0,768.




Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment