Полезные материалы:

Теория вероятностей. Математическая статистика

Методическое пособие с примерами и заданиями этой работы (doc): Часть1 Часть2

1. Основные понятия теории множеств
Определить и изобразить на рисунках множества :

;
2. Законы алгебры множеств
Пусть A, B, C – подмножества некоторого универсального множества U. Установите справедливость нижеследующих утверждений.
    
3. Элементы комбинаторики
а) Вычислите значение X комбинаторного выражения;
б) Решите комбинаторную задачу;
в) Решите комбинаторную задачу повышенного уровня сложности.
а);
б) Сколькими способами можно усадить на скамейку 6 человек?
в) В спортивной секции занимаются 10 человек. Сколькими способами можно выбрать из них 5 человек, среди которых трое – участники эстафеты 100 + 400 + 500 и двое – запасных?
4. Классическое определение вероятности
Решите задачу на вычисление вероятности, основываясь на ее классическом определении.
В конверте среди 100 фотографий находится одна разыскиваемая. Из конверта наудачу извлечены 10 карточек. Найти вероятность того, что среди них окажется нужная.
5. Геометрическая вероятность
Решите задачу на вычисление геометрической вероятности:
Прямоугольный треугольник с катетами 3 см и 4 см вписан в круг. Какова вероятность того, что случайная точка, брошенная в круг, попадет и на треугольник?
6. Основные теоремы теории вероятностей
Решите задачу на вычисление вероятности с помощью теорем сложения  и умножения вероятностей:
В ящике 9 белых и 11 черных шаров. Один шар вынут и отложен в сторону. Какова вероятность того, что следующий вынутый шар будет белым, если цвет первого неизвестен?
7. Формула полной вероятности
Решите задачу на вычисление полной вероятности события:
В сборочный цех поступили детали с трех станков. На первом станке изготовлено 51% деталей от их общего количества, на втором станке 24% и на третьем 25%. При этом на первом станке было изготовлено 90% деталей первого сорта, на втором 80% и на третьем 70%. Какова вероятность того, что взятая наугад деталь окажется первого сорта?
8. Формула Бейеса
Решите задачу на вычисление бейесовской вероятности:
В специализированную больницу поступают в среднем 50 процентов больных с заболеванием К, 30 процентов – с заболеванием L, 20 процентов – с заболеванием М. Вероятность полного излечения болезни К равна 0,7; для болезней L и M эти вероятности, соответственно, равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найти вероятность того, что он страдал заболеванием К.
9. Формулы Муавра – Лапласа. Вероятности редких событий
Решите задачу на вычисление вероятностей случайных событий с применением локальной или интегральной теорем Муавра – Лапласа или распределения Пуассона.
В каждом из 500 независимых испытаний событие A происходит с постоянной вероятностью 0,4. Найти вероятность того, что событие A произойдет менее 235 раз.
10. Закон распределения вероятностей дискретной случайной величины (д.с.в.). Числовые характеристики распределения д.с.в.
Составить закон распределения вероятностей д.с.в. X. Построить многоугольник распределения. Найти числовые характеристики распределения (моду распределения, математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение s(X)).
На элеватор прибыло N1 = 6 машин агрофирмы АФ-1 и N2 = 9 машин агрофирмы AФ-2. Под разгрузку случайным образом загоняются n = 6 машин.
11. Закон распределения вероятностей дискретной случайной величины (д.с.в.). Числовые характеристики распределения д.с.в.
Для непрерывной случайной величины (н.с.в.) X задана функция распределения F(x) (плотность функции распределения f(x)). Вычислить соответствующую плотность функции распределения f(x) (функцию распределения F(x)). Проверить выполнение условия нормировки распределений. Построить графики обеих функций. Вычислить числовые характеристики распределений: математическое ожидание M(X) и дисперсию D(X). Вычислить вероятность того, что н.с.в. X примет значения из заданного интервала (a; b).
Примечание: C1, C2 = сonst.
Плотность функции распределения вероятностей н.с.в. X задана при x≥0 выражением: f(x)  = С1×exp(–3x) (С1 > 0); при x < 0 плотность f(x)  = 0. Интервал (a; b) = (0; 2).
12. Статистическое распределение случайной величины и его числовые характеристики.
Представлены статистические данные. Требуется: 1) составить дискретный вариационный ряд, при необходимости упорядочив его; 2) определить основные числовые характеристики ряда; 3) дать графическое представление ряда в виде полигона (гистограммы) распределения; 4) сформулировать содержательные выводы.
Прим. 1) При проверке статистической гипотезы о виде распределения принять уровень значимости a = 0,05; 2) Для числовой обработки данных рекомендуется использовать подходящий математический пакет, например, электронную таблицу MS Excel.
По автотранспортному предприятию, осуществляющему перевозку грузов автомобилями КамАЗ-5320 грузоподъемностью 16 т, имеются следующие данные о весе партий груза (т):

 8     11    14     6     10    13    12    16    15    16
16    10    16    13    14    16    16      4    16    14
5    13    11      2    16      8    16      7    14    16.

Оформление Сканирование рукописного текста в Word
Код работы ТВ7-9

Заказать эту работу:



Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment