Полезные материалы:

Теория вероятностей. Математическая статистика

Методическое пособие с примерами и заданиями этой работы (doc): Часть1 Часть2

Определить и изобразить на рисунках множества :

A = {(x, y) ∈ R2: y ≥ x2},  B = {(x, y)∈ R2: y ≤ 4 – x2};
2. Законы алгебры множеств
Пусть A, B, C – подмножества некоторого универсального множества U. Установите справедливость нижеследующих утверждений.
 
3. Элементы комбинаторики
а) Вычислите значение X комбинаторного выражения;
б) Решите комбинаторную задачу;
в) Решите комбинаторную задачу повышенного уровня сложности.
а)
б) На вершину горы ведут 5 троп. Сколькими способами два туриста, идущие разными тропами, могут добрать до вершины?
в) Из студенческой группы, в которой 7 юношей и 9 девушек, нужно выбрать трех дежурных так, чтобы среди них были и юноши и девушки. Сколькими способами это можно сделать?
4. Классическое определение вероятности
Решите задачу на вычисление вероятности, основываясь на ее классическом определении.
В ящике имеется 15 деталей, среди которых 10 окрашенных. Сборщик наудачу извлекает три детали. Найти вероятность того, что извлеченные детали окажутся окрашенными.
5. Геометрическая вероятность
Решите задачу на вычисление геометрической вероятности:
Шкала секундомера имеет цену деления 2 сек. Какова вероятность сделать отсчет с ошибкой не более 0,5 сек., если отсчет округляется до целого деления в ближайшую сторону?
6. Основные теоремы теории вероятностей
Решите задачу на вычисление вероятности с помощью теорем сложения  и умножения вероятностей:
Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадет хотя бы один из стрелков.
7. Формула полной вероятности
Решите задачу на вычисление полной вероятности события:
Из 40 деталей 10 изготовлены в первом цехе, 25 – во втором, а остальные – в третьем. Первый и третий цехи дают продукцию отличного качества с вероятностью 0,9, второй цех - с вероятностью 0,7. Какова вероятность того, что взятая наудачу деталь будет отличного качества?
8. Формула Бейеса
Решите задачу на вычисление бейесовской вероятности:
Изделие проверяется на стандартность одним из трех товароведов. Вероятность того, что изделие попадет к первому, равна 0,45, ко второму – 0,15, к третьему – 0,4. Вероятность того, что стандартное изделие будет признано стандартным первым товароведом, равна 0,9, вторым – 0,99, третьим – 0,95. Отобранное изделие при проверке было признано стандартным. Найти вероятность того, что это изделие проверил второй товаровед.
9. Формулы Муавра – Лапласа. Вероятности редких событий
Решите задачу на вычисление вероятностей случайных событий с применением локальной или интегральной теорем Муавра – Лапласа или распределения Пуассона.
Книга в 500 страниц содержит 800 опечаток. Найти вероятность того, что на странице не менее 3-х опечаток.
10. Закон распределения вероятностей дискретной случайной величины (д.с.в.). Числовые характеристики распределения д.с.в.
Составить закон распределения вероятностей д.с.в. X. Построить многоугольник распределения. Найти числовые характеристики распределения (моду распределения, математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение s(X)).
Игральный кубик брошен n = 8 раз. Д.с.в. X – число выпадений нечетного числа очков в n бросаниях.
11. Закон распределения вероятностей дискретной случайной величины (д.с.в.). Числовые характеристики распределения д.с.в.
Для непрерывной случайной величины (н.с.в.) X задана функция распределения F(x) (плотность функции распределения f(x)). Вычислить соответствующую плотность функции распределения f(x) (функцию распределения F(x)). Проверить выполнение условия нормировки распределений. Построить графики обеих функций. Вычислить числовые характеристики распределений: математическое ожидание M(X) и дисперсию D(X). Вычислить вероятность того, что н.с.в. X примет значения из заданного интервала (a; b).
Примечание: C1, C2 = сonst.
Функция распределения задана на всей числовой оси Ox выражением: F(x)  =  ½ + С1×arctg(½x). Интервал (a; b) = (0; 2).
12. Статистическое распределение случайной величины и его числовые характеристики.
Представлены статистические данные. Требуется: 1) составить дискретный вариационный ряд, при необходимости упорядочив его; 2) определить основные числовые характеристики ряда; 3) дать графическое представление ряда в виде полигона (гистограммы) распределения; 4) сформулировать содержательные выводы.
Прим. 1) При проверке статистической гипотезы о виде распределения принять уровень значимости a = 0,05; 2) Для числовой обработки данных рекомендуется использовать подходящий математический пакет, например, электронную таблицу MS Excel.
Получены данные об урожайности ржи на различных участках поля:

Урожайность ржи, ц/га

9 – 12

12 – 15

15 – 18

18 – 21

21 –  24

24 – 27

Доля участка в общей площади, %

6

12

33

22

19

8

Оформление Сканирование рукописного текста в Word
Код работы ТВ7-11

Заказать эту работу:



Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment