Полезные материалы:

Теория вероятностей. Математическая статистика

Методическое пособие с примерами и заданиями этой работы (doc): Часть1 Часть2

4. Геометрическая вероятность
Решите задачу на вычисление геометрической вероятности.
На плоскость, уложенную равносторонними треугольными плитками со стороной 12 см уронили монету радиусом 1 см. Какова вероятность того, что монета не пересечет ни одну из стыковых линий?

5. Теоремы сложения и умножения вероятностей
Решите задачу на вычисление вероятности с применением соответствующих теорем сложения и умножения вероятностей.
Трое поочередно бросают монету. Выигрывает тот, у кого раньше появится герб. Определить вероятности выигрыша для каждого из игроков.

7. Закон распределения вероятностей дискретной случайной величины (д.с.в.). Числовые характеристики распределения д.с.в.
Составить закон распределения вероятностей д.с.в. X. Построить многоугольник распределения. Найти числовые характеристики распределения (моду распределения, математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение s(X)).
Два игральных кубика бросаются n = 12 раз с подсчетом сумм выпавших очков. Д.с.в. X – число сумм, кратных четырем.

9. Проверка статистических гипотез
Относительно случайной величины (с.в.) X (или двух с.в. X и Y) выдвинута основная статистическая гипотеза H0, при конкурирующей гипотезе H1. Применяя подходящий статистический критерий, выполнить проверку справедливости основной гипотезы на уровне значимости a = 0,05. При необходимости найти точечные выборочные оценки параметров распределения. Анализируемые распределения представить графически.

задана эмпирическим рядом распределения для n = 200 изделий:

xi

0,3

0,5

0,7

0,9

1,1

1,3

1,5

1,7

1,9

2,1

2,3

Прим.

ni

6

9

26

25

30

26

21

24

20

8

5

Sni = 200

      Гипотеза H0 С.в. X (отклонение контролируемого размера изделия от номинала, мм): с.в. X имеет нормальное распределение.
Гипотеза H1: с.в. X имеет распределение, отличное от нормального.

10. Элементы корреляционного анализа
Найти коэффициент линейной корреляции Пирсона и уравнение линии регрессии между количественно измеряемыми с.в. X и Y, либо найти выборочные коэффициенты ранговой корреляции (Спирмена или Кендалла) между с.в. A и B, ранжированными в порядковой шкале. Используя подходящий статистический критерий, проверить гипотезу о значимости найденного коэффициента корреляции. Уровень значимости a = 0,05.
У к а з а н и е. Рекомендуется использование математического программного обеспечения для проведения расчетов и представления результатов в табличном (графическом) виде.
Знания n = 10 студентов проверены по двум тестам A и B. Оценки по стобалльной системе оказались следующими:

A

95

90

86

84

75

70

62

60

57

50

B

92

93

83

80

55

60

45

72

62

70

Найти выборочный коэффициент ранговой корреляции Кендалла между оценками по двум тестам и проверить статистическую гипотезу о его значимости.

Оформление Сканирование рукописного текста в Word
Код работы ТВ11-6

Заказать эту работу:



Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment