Полезные материалы:

Теория вероятностей. Математическая статистика

Методическое пособие с примерами и заданиями этой работы (doc): Часть1 Часть2

1. Основные понятия теории множеств
a) Определите и изобразите на рисунках множества :
б) Пусть A, B, C – подмножества некоторого универсального множества U. Установите справедливость предложенного утверждения.
а)
б)

2. Элементы комбинаторики
а) Вычислите значение X комбинаторного выражения;
б) Решите комбинаторную задачу;
в) Решите комбинаторную задачу повышенного уровня сложности.
а)  
б) На конференции должны выступить 7 докладчиков. Сколькими способами можно составить списки выступлений ораторов?
в) Сколькими способами можно выбрать из колоды в 36 карт пять карт так, чтобы среди них было не менее трех шестерок?

3. Классическое определение вероятности
Решите задачу на вычисление вероятности, основываясь на ее классическом определении.
Найти вероятность того, что в 4-значном номере случайно выбранного в большом городе автомобиля сумма первых двух цифр равна сумме двух последних.

4. Геометрическая вероятность
Решите задачу на вычисление геометрической вероятности.
В круге радиуса R наудачу проведена хорда. Найти вероятность того, что длина хорды не более R.

5. Теоремы сложения и умножения вероятностей
Решите задачу на вычисление вероятности с применением соответствующих теорем сложения и умножения вероятностей.
В шкатулке лежат 6 монет по 20 коп., 5 монет по 15 коп., и 2 монеты по 10 коп. Наугад берутся 6 монет. Какова вероятность того, что в сумме они составят не более одного рубля?

6. Формула полной вероятности
Решите задачу на вычисление полной вероятности события.
Имеются две партии изделий по 12 и 10 штук, причем в каждой партии одно изделие бракованное. Изделие, взятое наудачу из первой партии, переложено во вторую, после чего выбирается  наудачу изделие из второй партии. Найти вероятность извлечения бракованного изделия из второй партии.

7. Закон распределения вероятностей дискретной случайной величины (д.с.в.). Числовые характеристики распределения д.с.в.
Составить закон распределения вероятностей д.с.в. X. Построить многоугольник распределения. Найти числовые характеристики распределения (моду распределения, математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение s(X)).
Монета подбрасывается до тех пор, пока герб не выпадет второй раз, при этом делается не более 4 проб. Д.с.в. X – число подбрасываний.

8. Закон распределения вероятностей непрерывной случайной величины (н.с.в.). Числовые характеристики распределения н.с.в.

Для непрерывной случайной величины (н.с.в.) X задана функция распределения F(x) (плотность функции распределения f(x)). Вычислить соответствующую плотность функции распределения f(x) (функцию распределения F(x)). Проверить выполнение условия нормировки распределений. Построить графики обеих функций. Вычислить числовые характеристики распределений: математическое ожидание M(X) и дисперсию D(X). Вычислить вероятность того, что н.с.в. X примет значения из заданного интервала (a; b).
Примечание: C1, C2 = сonst.
Функция распределения                           
                                    
Интервал (a; b) = (1; 2).

9. Проверка статистических гипотез
Относительно случайной величины (с.в.) X (или двух с.в. X и Y) выдвинута основная статистическая гипотеза H0, при конкурирующей гипотезе H1. Применяя подходящий статистический критерий, выполнить проверку справедливости основной гипотезы на уровне значимости a = 0,05. При необходимости найти точечные выборочные оценки параметров распределения. Анализируемые распределения представить графически.
С.в. X (число семян сорняков в пробе зерна) задана эмпирическим рядом распределения:

xi

0

1

2

3

4

5

6

Прим.

ni

405

366

175

40

8

4

2

Sni = 1000

Гипотеза H0: с.в. X имеет распределение Пуассона.
Гипотеза H1: с.в. X распределена не по закону Пуассона.

10. Элементы корреляционного анализа
Найти коэффициент линейной корреляции Пирсона и уравнение линии регрессии между количественно измеряемыми с.в. X и Y, либо найти выборочные коэффициенты ранговой корреляции (Спирмена или Кендалла) между с.в. A и B, ранжированными в порядковой шкале. Используя подходящий статистический критерий, проверить гипотезу о значимости найденного коэффициента корреляции. Уровень значимости a = 0,05.
У к а з а н и е. Рекомендуется использование математического программного обеспечения для проведения расчетов и представления результатов в табличном (графическом) виде.
Знания n = 10 студентов проверены по двум тестам A и B. Оценки по стобалльной системе оказались следующими:

A

95

90

86

84

75

70

62

60

57

50

B

92

93

83

80

55

60

45

72

62

70

Вычислив коэффициент ранговой корреляции Спирмена, установить согласуются ли результаты испытаний по тестам A и B?

Оформление Сканирование рукописного текста в Word
Код работы ТВ11-1

Заказать эту работу:



Учебники
Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики Comment

Справочники
Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики. Comment

Онлайн калькуляторы
Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением. Comment